OceanXtremes: Oceanographic Data-Intensive Anomaly Detection and Analysis Portal AIST-14

PI: Thomas Huang Co-Is: Ed Armstrong, George Chang, Toshio Chin, and Brian Wilson Collaborators: Tong (Tony) Lee, and Victor Zlotnicki

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109-8099
United States of America

THUANG/JPL ESTF 2015

Overview

- OceanXtremes is a computational platform powered by an intelligent, Cloud-based analytic service backend that enables execution of domain-specific, multi-scale anomaly and feature detection algorithms across the entire archive of ocean science datasets.
- On-Premise Cloud Computing environment in JPL, where it is closed to the oceanography data center
- Using this platform scientists can efficiently search for anomalies or ocean phenomena, compute
 data metrics for events or over time-series of ocean variables, and efficiently find and access all of
 the data relevant to their study (and then download only that data).
- The OceanXtremes' analytic backend will demonstrate three new technology ideas to provide rapid turn around on climatology computation and anomaly detection:
 - 1. An adaption of the MapReduce framework for **parallel data-mining** of science datasets, typically large 3 or 4-dimensional arrays packaged in NetCDF and HDF.
 - 2. An algorithm profiling service to efficiently and cost-effectively scale up **hybrid Cloud computing resources** based on the needs of scheduled jobs (CPU, memory, network, and bursting from a private Cloud computing cluster to public cloud provider like Amazon Cloud services)
 - 3. An extension to industry-standard search solutions (OpenSearch and Faceted search) to provide support for **shared discovery and exploration of ocean phenomena and anomalies**, along with unexpected correlations between key measured variables.

Anomaly Detection

- Anomaly detection is a process of identifying items, events or observations, which do not conform to an expected pattern in a dataset or time series.
- Typically this is a two-stage procedure
 - Determine a long-term/periodic mean ("climatology")
 - Deviations from the mean are searched. Step 1 could be omitted in cases where a climatology data set already exists.

Use Cases

- El Niño/La Nina anomaly characterization
- El Niño /La Nina teleconnections
- Ocean features: Gradients, frontal detection, upwelling
- Rogue waves in high resolution altimeter data

Computational and I/O Intensive

Pasadena, California

OceanXtremes: High-Level Workflow

Proposed high-level workflow

- Leverage Virtual Machine technology
- Leverage the elasticity of Cloud Computing
- Leverage Cloud data store for high-performance search and read
- Leverage and extend technologies developed at the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC)
- Leverage and extend technologies developed through several other funded projects in relation to PO.DAAC
- Leverage industry standard, open-source data processing/analysis solutions

Our Experience with Cloud Computing

ESTF 2015

- 2011 Technology Infusion Cloud Computing Study
 - Amazon
 - NASA Nebula
 - Apache Hadoop and HBase
 - Built Climatology Service
- 2014 NASA ITLabs Cloudbursting
- 2014 ESDSWG Cloud Tasks
 - Platform as a Service
 - Science Data Service Platform
- 2015 SMAP Big Data Analysis Service
- 2015 SMAP Imagery System on Amazon GovCloud
- 2015 PO.DAAC Private Cloud Platform to support future Big Data missions such as SWOT
- Working with Big Data and Cloud Computing Communities
 - ESIP Federation
 - NASA ESDSWG
 - NIST Big Data Working Group
 - EarthCube

THUANG/JPL

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Nexus: Data Analysis Platform

- 👿 Data analysis platform on the Cloud
- M Data management and transformation
- Multi-disciplinary data coordination
- M On-the-fly analysis services
 - M Time series
 - **M** Correlation
 - Re-gridding
 - Data subsetting
 - Data visualization service
- RESTful access to geospatial array data
- M Applications
 - NASA Sea Level Change Portal
 - M AIST-14: DOMS
 - ACCESS-13: Virtual Quality Screening Service
 - PO.DAAC's next generation of subsetting and data analysis suites

6

National Aeronautics and Space Administration

Web Services for Plotting and Data Analysis

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena. California

Integration with SMAP Interactive Map Client

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

OceanXtremes High-Level Architecture

Key Milestones

Project scheduled start May, 2015

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

THANKS

Questions, and more information

thomas.huang@jpl.nasa.gov

THUANG/JPL ESTF 2015